Efficient and Reliable Generation Asset Valuation

Assef Zobian
Cambridge Energy Solutions
Presented at GE MAPS Users'
Conference
October 24-25, 2002
Boston, MA

Presentation Outline

- Steps involved in Generation Asset
 Valuation
- Tools Needed
- A Case Study

Asset Valuation Process

- Forecast and analyze current and future market fundamentals, i.e, supply and demand (& transmission), and regulatory environment
- Forecast forward revenues and costs
- Capture the volatility of the market and the optionality value
- Discount the future cash flow to today's dollars and determine the value of the project

Tools Needed

- Database of all supply, demand and transmission elements, and market and regulatory structure
- A tool to forecast revenues and costs including transmission costs (i.e., MAPS)
- A tool to incorporate the volatility of the market into the forecasted net revenues (i.e., Randomizer)
- A financial model to determine the net present value of the volatile cash flow

The Market Database

- Supply: All generation assets with their characteristics (heat rates, startup cost, capacity, etc..), hydro units, environmental costs, and fuel prices
- Demand: Hourly load forecast on zonal basis (peak and energy), interruptible demand
- Transmission: Transmission system elements and constraints (RMR, Second contingency, PARs, etc..)

The Market Database (cont.)

- Market structure: ISO with LMP, multisettlement system, interconnection to other systems, ICAP requirement and market
- Ancillary services market: Spinning and non-spinning reserves, AGC market and other non-market services

SCD & LMP Forecaster

- Dispatch generation resources to meet demand subject to transmission and reliability constraints; mimic the ISO procedures
- Calculate locational market clearing prices for energy and other ancillary services

Randomizer

- Capture Electric Power Markets local volatility and price probability distribution
- Capture fuel price volatility and transmission cost volatility
- Capture the true/physical characteristics of generation assets (not a simple spread option)

Financial Model

 Simple Discounted Cash Flow model with all taxes, depreciation, operating costs and revenues from all markets (energy, capacity and ancillary services)

Case Study

We used the above approach to value a set of three Generation Assets

Net Present Value of a Portfolio of Generation Assets in NY (\$ Millions)					
Size (MW)	Туре	Using MAPS	MAPS with Optionality*		Percent ncrease
	Combined	77年代	J- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
101 (Cycle Gas/Oil	18	3	25	39%
53 :	Steam Coal	17		20	20%
"经"是从一个。这	Combined				
95 (Cycle Gas/Oil	28	3	36	30%
Total		62	2	81	30%

^{*}Optionality value Using Historical Locational Volatility levels

These assets were sold for \$61 Million (compare to what it would have been a year ago)

Conclusions

- First, accurate valuation can be achieved using detailed market models and valid assumptions
- The market is back to the fundamentals
- Optionality value of generation assets is much more difficult to assess (future volatility estimate is the key)